Implementation of Medical Al in the Clinical Setting

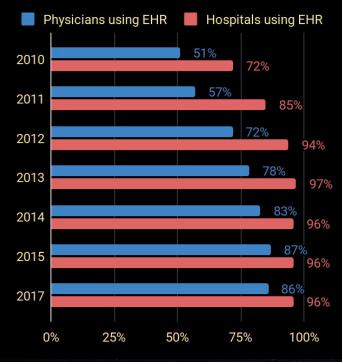
Narges Razavian

Assistant Professor Center for Healthcare Innovation & Delivery Science Predictive Analytics Unit Departments of Population Health and Radiology New York University Langone Health

CHAIR-SU Workshop: The Learning Hospital, March 2023

The Healthcare Data Revolution

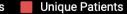
EHR Adaption the US

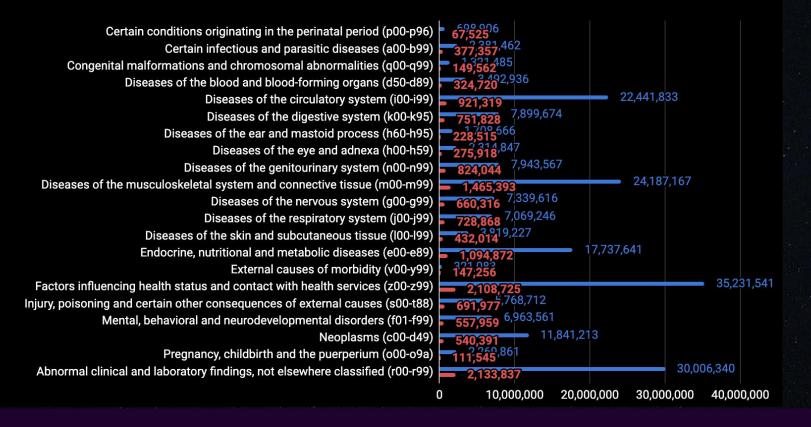


NYU Langone 8.5 mil Patients since 2013 11 Radiologic examination, Computed tomography, head Dual-energy X-ray **Diagnostic Ultrasound** 2,886,893 **Diagnostic Nuclear Medicine Bone/Joint Studies** Magnetic resonance (eg, Computed tomography, Computed tomography, Breast, Mammography

NYU Patients and Diseases

Unique Facts





Improving Patient Care

Decision Support to Clinicians Decision Support to Patients

Improving Patient Care

New Data-Driven Guidelines for Medical Societies Resource Allocation Policies Lowering diagnostic errors

Prognosis

Aggregating more data

Decision Support to Clinicians Adherence

Education

Decision Support to Patients Diagnosis and Prognosis

Improving Patient Care

New Data-Driven Guidelines for Medical Societies

Counterfactual/Causal insights, Personalized medicine

Screening, Diagnosis and Prognosis Resource Allocation Policies

Better planning

Improving Fairness

Automation to Scale

Legislations and Reimbursements

Improving Patient Care: Long on Promise, Short on Proof

Improving Patient Care: Long on Promise, Short on Proof

Comment | Published: 09 September 2020

Welcoming new guidelines for AI clinical research Eric J. Topol⊡

 Nature Medicine
 26, 1318–1320(2020)
 Cite this article

 6802
 Accesses
 6
 Citations
 239
 Altmetric
 Metrics

With only a limited number of clinical trials of artificial intelligence in medicine thus far, the first guidelines for protocols and reporting arrive at an opportune time. Better protocol design, along with consistent and complete data presentation, will greatly facilitate interpretation and validation of these trials, and will help the field to move forward.

The past decade ushered in excitement for the potential to apply deep-learning algorithms to healthcare. This subtype of artificial intelligence (AI) has the ability to improve the accuracy and speed of interpreting large datasets, such as images, speech and text. However, for deep learning to be accepted and implemented in the care of patients, proof from randomized clinical trials is urgently needed.

Of hundreds of retrospective AI models, only a dozen prospective trials and 7 RCTs (6 in China)

Article | Open Access | Published: 06 October 2020

A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients

Narges Razavian, Vincent J. Major, Mukund Sudarshan, Jesse Burk-Rafel, Peter Stella, Hardev Randhawa, Seda Bilaloglu, Ji Chen, Vuthy Nguy, Walter Wang, Hao Zhang, Ilan Reinstein, David Kudlowitz, Cameron Zenger, Meng Cao, Ruina Zhang, Siddhant Dogra, Keerthi B. Harish, Brian Bosworth, Fritz Francois, Leora I. Horwitz, Rajesh Ranganath, Jonathan Austrian & Yindalon Aphinyanaphongs ⊡

npj Digital Medicine 3, Article number: 130 (2020) | Cite this article 5243 Accesses | 1 Citations | 55 Altmetric | Metrics

Of 30 Peer-reviewed COVID models, 1 underwent prospective validation and none underwent an RCT nature > nature machine intelligence > analyses > article

Analysis | Open Access | Published: 15 March 2021

Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

Michael Roberts ⊠, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-Bibiane Schönlieb

Nature Machine Intelligence 3, 199–217(2021) | Cite this article 16k Accesses | 786 Altmetric | Metrics

Zero out of 62 reviewed Covid Imaging work has been implemented or even suitable in any clinical practice

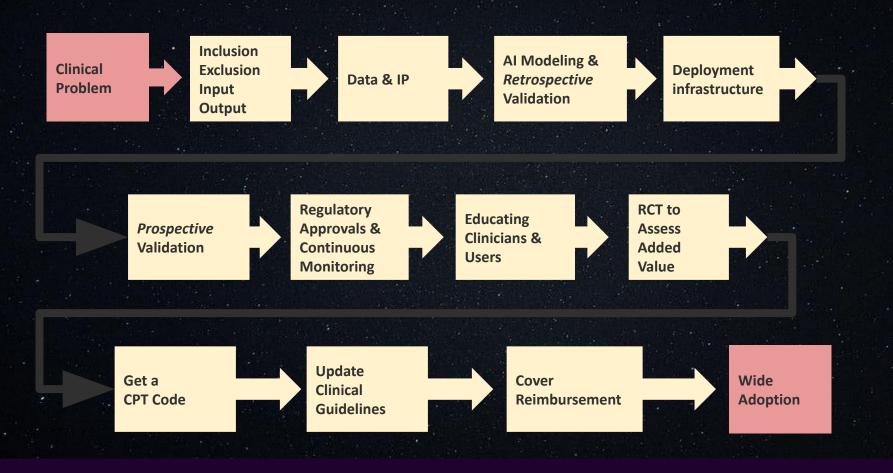
AI Implementation: The Full Process

Al Implementation: The Full Process

Clinical Problem

> Wide Adoption

AI Implementation: The Full Process



A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients

Narges Razavian, Vincent J. Major, Mukund Sudarshan, Jesse Burk-Rafel, Peter Stella, Hardev Randhawa, Seda Bilaloglu, Ji Chen, Vuthy Nguy, Walter Wang, Hao Zhang, Ilan Reinstein, David Kudlowitz, Cameron Zenger, Meng Cao, Ruina Zhang, Siddhant Dogra, Keerthi B. Harish, Brian Bosworth, Fritz Francois, Leora I. Horwitz, Rajesh Ranganath, Jonathan Austrian & Yindalon Aphinyanaphongs

npj Digital Medicine volume 3, Article number: 130 (2020)

Development and Validation of a Deep Learning Model for Early Alzheimer's Detection from Structural MRIs

Sheng Liu, Arjun Masurkar, Henry Rusinek, Jingyun Chen, Ben Zhang, Weicheng Zhu, Carlos Fernandez-Granda and Narges Razavian

Nature Scientific Reports, 2022

A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients

Narges Razavian, Vincent J. Major, Mukund Sudarshan, Jesse Burk-Rafel, Peter Stella, Hardev Randhawa, Seda Bilaloglu, Ji Chen, Vuthy Nguy, Walter Wang, Hao Zhang, Ilan Reinstein, David Kudlowitz, Cameron Zenger, Meng Cao, Ruina Zhang, Siddhant Dogra, Keerthi B. Harish, Brian Bosworth, Fritz Francois, Leora I. Horwitz, Rajesh Ranganath, Jonathan Austrian & Yindalon Aphinyanaphongs

npj Digital Medicine volume 3, Article number: 130 (2020)

Unknown Disease Trajectories

- Research from China/Italy
- NEJM, CDC, Ever-changing info

How could AI help?

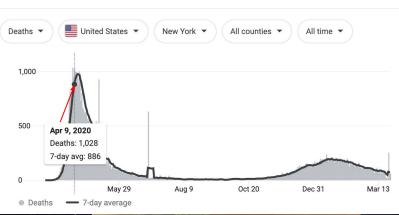
- Who is likely to have a positive test?
- Who should be admitted from the ED?
- Who is likely to deteriorate on the floors?
- Who is likely to be safe to discharge from the hospital?

Unknown Disease Trajectories

- Research from China/Italy
- NEJM, CDC, Ever-changing info

How could AI help?

- Who is likely to have a positive test?
- Who should be admitted from the ED?
- Who is likely to deteriorate on the floors?
- Who is likely to be safe to discharge from the hospital?



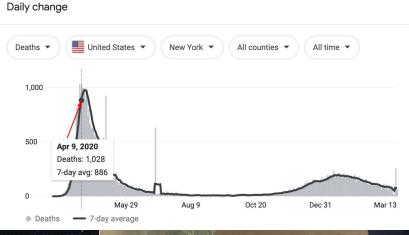
Unknown Disease Trajectories

- Research from China/Italy
- NEJM, CDC, Ever-changing info

How could AI help?

- Who is likely to have a positive test?
- Who should be admitted from the ED?
- Who is likely to deteriorate on the floors?
- Who is likely to be safe to discharge from the hospital?

Most Actionable Task: Who is likely to be safe to discharge?



Who is likely to be safe to discharge?

Who is likely to be safe to discharge?

Model Input Patient Data

Demographics		F
Labs		
	1001200005200	
Vitals		
Utilizations & Events		
Adverse Events		

Model Output (Adverse event in 96hr? Yes/No)

Who is likely to be safe to discharge?

Model Input Patient Data

Demographics Labs Vitals **Utilizations & Events**

Adverse Events

Model Output (Adverse event in 96hr? Yes/No)

- 1. ICU transfer
- 2. Intubation 3.
 - ED representation
- Hospice discharge 4.
- 5. Mortality
- Requiring O2 support in excess of nasal 6. cannula at 6 L/min.

Model needed to be put into EPIC

Model needed to be put into EPIC

Powerful	
model	
trained on a	
available	
inputs	

Variable selection: Yields p-values for importance of each input

Build parsimonious model with only important variables

Model needed to be put into EPIC

	Powerful
	i oweniui
ļ.	madal
	model
E.	trained on all
1	
Ľ	available
ı.	available
ı.	inputo
1	inputs

Variable selection: Yields p-values for importance of each input

Build parsimonious model with only important variables

65 variables:

demographics, vital signs, laboratory results, O2 utilization variables, and length-of-stay up to prediction time

13 variables

Oxygen support device, respiratory rate, oxygen saturation, temperature, LDH, platelet count, blood urea nitrogen, C-reactive protein, heart rate, eosinophils%

Model needed to be put into EPIC

Powerful	
model	4
trained on all	÷
available	
inputs	

Variable selection: Yields p-values for importance of each input Build parsimonious model with only important variables

Training: 1990 patients 17,614 prediction instances

Validation: 663 patients, 4,903 prediction instances

Heldout: 664 patients, 5914 prediction instances

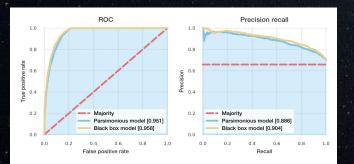
<u>"Blackbox" Models:</u> LightGBM Random Forest Logistic Regression Ensemble of all 3

Parsimonious Model: Logistic Regression

Model needed to be put into EPIC

Powerful	Variable
model	selection:
trained on all	Yields p-values
available	for importance of
inputs	each input

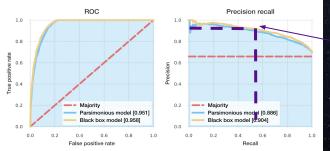
Build parsimonious model with only important variables



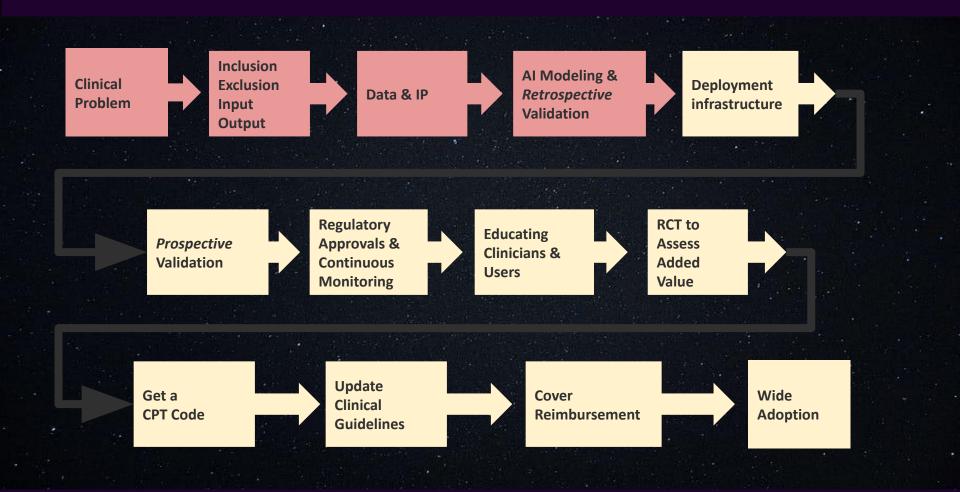
Model needed to be put into EPIC

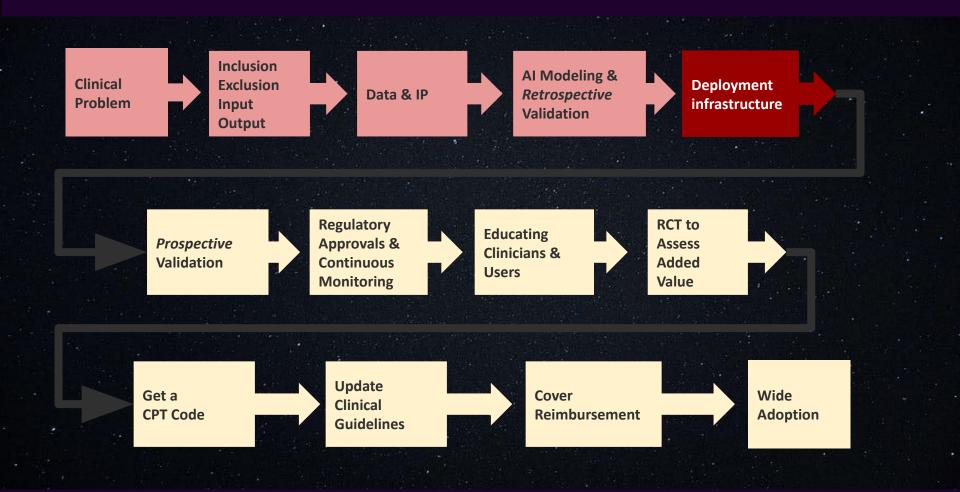
Variable selection:
Yields p-values for importance of each input

Build parsimonious model with only important variables



Threshold set for: 90% PPV 54.2% Sensitivity





Retrospective vs. Prospective Validation

Live data lives in Chronicles DataBase

By midnight - Clarity DB syncs with Chronicles

 Mortality, ICU, deterioration for retrospective modeling came from Clarity DB

 By 7AM daily - Caboodle DB syncs with Clarity
 Labs, Covid tests & results, ED and inpatient times, flowsheets: vitals, O2 vol/devices (for retrospective modeling)

Team Yin Aphinyanaphongs Nader Mherabi Jonathan Austrian Paul Testa Eduardo Iturrate **Rajan Chandras** Jordan Swartz Vincent Major Narges Razavian Ji Chen Neil Jethani **Jager Hartman** Jie Yang Seda Bilaloglu **Ben Zhang** Po Lai Yau Walter Wang Vuthy Nguy Po Lai Yau Michael Quinn Hao Zhang Rajesh Ranganath **Mukund Sudarshan**

Deployment

Intended use: live, update every 30 minute

"Reporting workbench" to select variables & inclusion/exclusion criteria from Chronicles directly. (Tedious job!)

Model via Nebula cloud computing platform (Python)

Results pushed back into "Patient List" and "Covid Summary Report". Stored as flowsheet

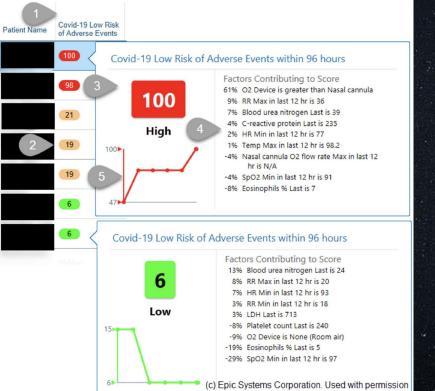
Can show "variable contributions" to model score

<u>Team</u>

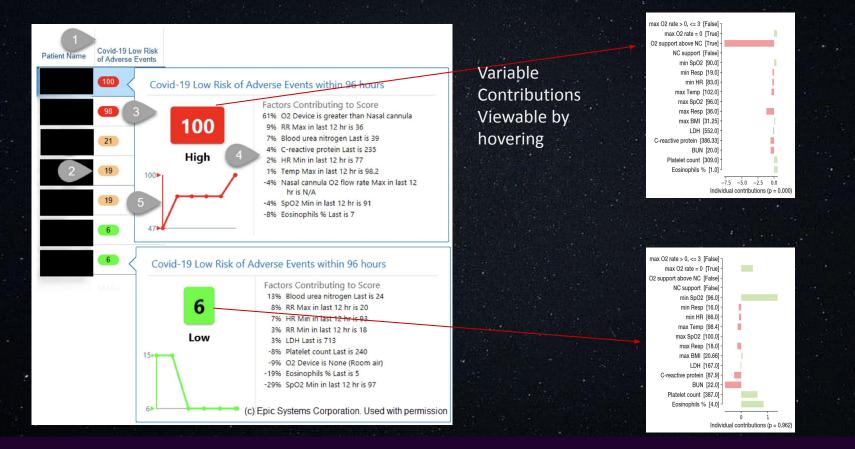
NYU Yin Aphinyanaphongs Jonathan Austrian Vincent Major

EPIC Adrienne Alimasa Garry Bowlin Erin Ello Nick Krueger Sean McGunigal Joe McNitt Ben Noffke George Redgrave Owen Sizemore Drew McCombs James Hickman

What Clinicians See in Patient Lists



What Clinicians See in Patient Lists



What Clinicians See in "Covid Summary Report"

Summary

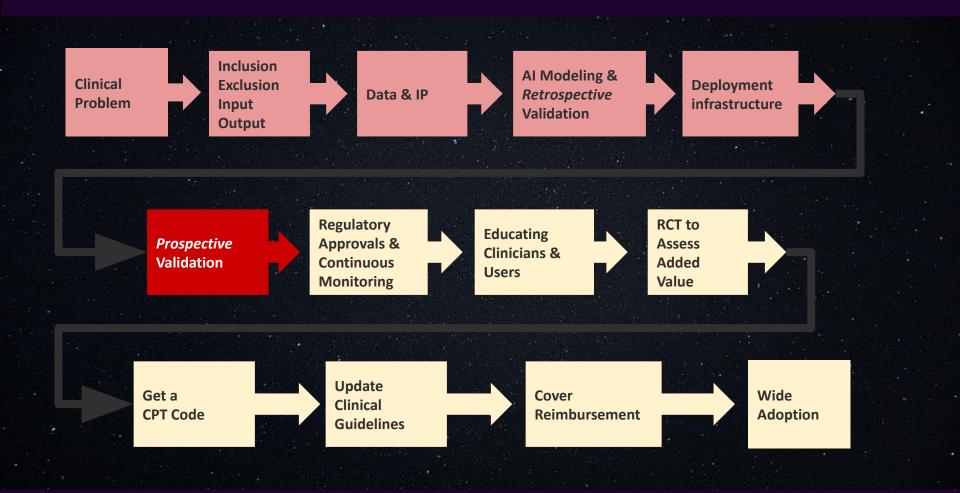
	05/01 05/02		02	05/03	05/04	05/05	05/06				
Time: ৰ	1823	0825	1722	0509	0511	0511	0455	1655	2015	2027	0420
Labs											
INR					1.1≣	1.2	1.3				
Prothrombin Time					12.5	13.8	15.3				
ANTI XA LEVEL - HEPARIN, UNFRA								0.04			0
Medications											
Enoxaparin SUBCUTANEOUS (mg)	90	90	90	90							
heparin sodium,porcine INJECTION (6,500		
Infusions											
Dose (units/kg/hr) Heparin										18 Un≣	

None

Second Se

COVID-19 Symptom Onset Date Order (From admission, onward) None Labs (Most recent last 30 days) Report (Last result from the past 720 hours)

Switch View SARS-COV-2 BY... HEPATITIS C AN...



Prospective Validation

Silent live (May 1 - May 15)

- Chart review by clinical team
- Setting up randomization for RCT
- Monitoring infrastructure

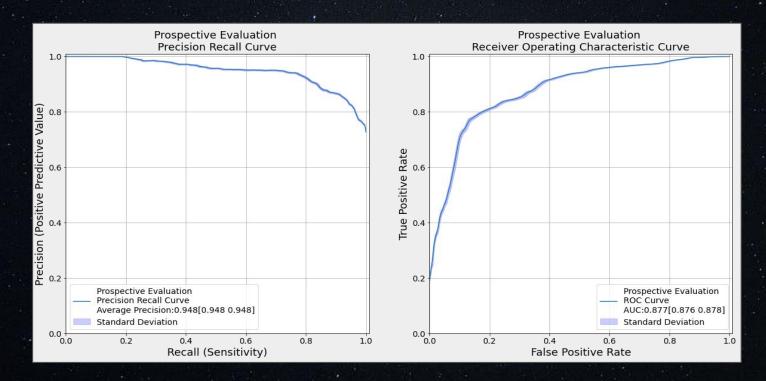
Live on Friday May 15th 2020

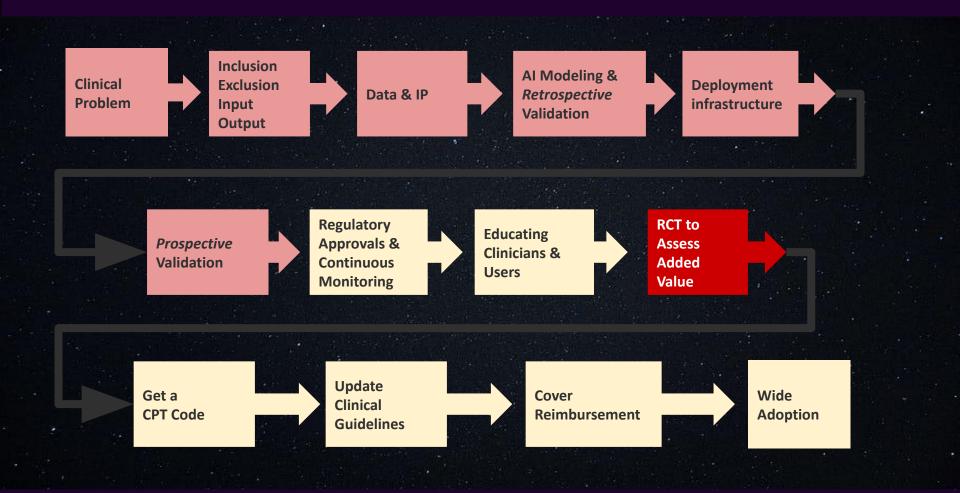
- Outreach via broadcast email
- Outreach via campus-wide presentations
- Clinician education, QA
- Continuous monitoring
- Chart review of all re-admissions and all mortality (regardless of RCT arm)

Team Jonathan Austrian Yin Aphinyanaphongs Vincent Major Nader Mherabi **Brian Bosworth** Fritz Francois Jesse Rafel David Kudlowsky Peter Stella Simon Jones Walter Wang Vuthy Nguy **Cameron Zenger** Julia Greenberg Meng Cao **Ruina Zhang** Sid Dogra

Prospective Validation

Continuous Monitoring & chart review of every re-admission \rightarrow No harm observed





Randomized Clinical Trial

Hypothesis:

As patients go green, the care team can prioritize discharge planning leading to a reduction in LOS and the time from first green and discharge.

Intervention:

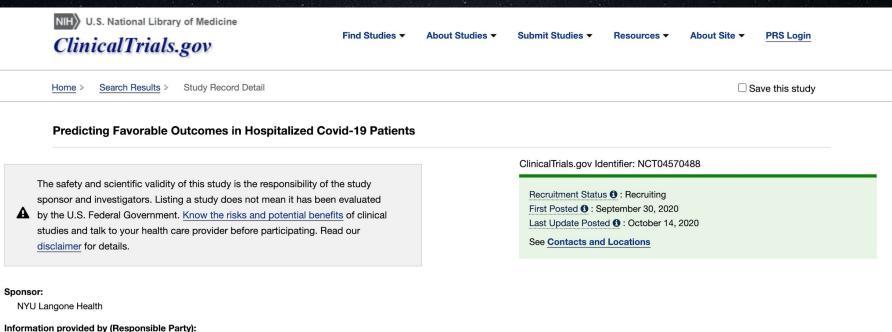
Display calculated score for half the patients

Outcome:

Primary: Time from first low risk prediction to discharge (gLOS) Secondary: Length of Stay Secondary: Readmissions; Re-presentation to the ED within 30 days; Mortality (safety)

Team Leora Horwitz Vincent Major Simon Jones Ashley Bagheri Jonathan Austrian Yin Aphinyanaphongs Narges Razavian Peter Stella Walter Wang Vuthy Nguy Michael Quinn **Batia Wiesenfeld** Elisabeth Wang Jay Stadelman Felicia Mendoza

Pre-Register the RCT



NYU Langone Health

Summary of RCT Results

From May to January 2021:

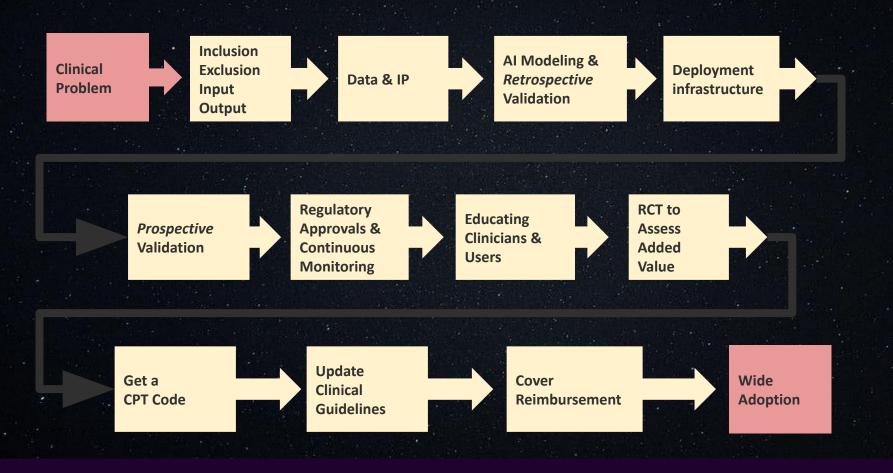
- 1803 admissions
- 1004 with at least 1 green score
- No statistical significance drop in gLOS
 - Intervention: 3.60 [1.95–6.55] vs. Control: 3.83 [2.06, 6.96], p=0.4
 - Effect seems to be isolated to first 10 weeks of the study:
 - Intervention: 3.11 [1.83–5.11] vs. Control: 3.66 [1.98–6.02], p=0.1
 - Past 10 week:
 - Intervention: 4.18 [2.15–10.00] vs. Control: 4.18 [2.17–8.95]
 - No impact on safety indicators
 - Any indicator among 1737 patients with >30 days follow-up: 26.7 vs 26.3%, p=0.9

Qualitative Study - Survey of Clinicians

<u>Team</u> Batia Wiesenfeld Elisabeth Wang

- 195 Clinicians (attendings) surveyed
- Tool users experienced significantly less uncertainty about treating Covid patients
 - (1-5 scale) M_{users} =1.89 vs $M_{non-users}$ =2.32 p<0.05
- Tools users reported significantly greater ability to anticipate, plan and prepare for Covid patient discharge
 - (1-5 scale) M_{users} =2.88 vs $M_{non-users}$ =2.21 p<0.1
- Significant indirect effect of tool use on confidence in a safe discharge via increased ability to anticipate, plan and prepare for discharge
- Tool experienced as generally consistent with clinical judgement
- Experienced as most valuable early in pandemic (higher overload/pressure to discharge/uncertainty/inexperience)
- When tool is discrepant from clinician's judgment, clinicians report investigating case further - increasing learning/improved decision making
- Primary barriers to tool use: Lack of awareness/education/validation information

AI Implementation: The Full Process



Development and Validation of a Deep Learning Model for Early Alzheimer's Detection from Structural MRIs

Sheng Liu, Arjun Masurkar, Henry Rusinek, Jingyun Chen, Ben Zhang, Weicheng Zhu, Carlos Fernandez-Granda and Narges Razavian

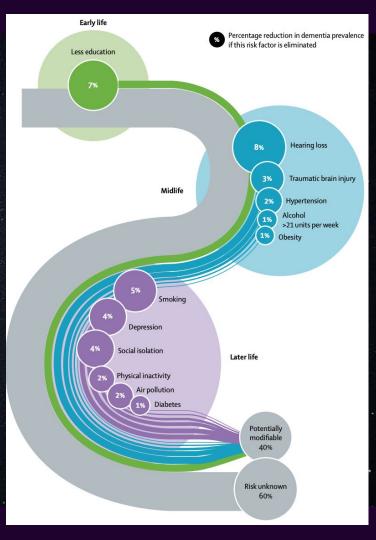
Nature Scientific Reports, 2022

Early Detection Matters

- All new clinical trials address "Mild to moderate AD"
- Early detection for preventative care
 - SPRINT MIND large scale randomized trial: Intensive hypertension control helps prevent conversion to MCI/AD
 - PREVENTABLE trial underway to study statins & cholesterol control
- Improved caregiver support & financial planning.
- Better enrollment for clinical trials

Dementia Disease Disparities

- 66% of AD patients are women
- Risk factors correlate with <u>Race & Socio-economic status</u>
- Black and Hispanic patients 30% and 40% less likely than White patients to be seen by neurologists
 - \circ ower education, low income, and being uninsured \rightarrow lower neurologist visits
- Dementia screening instruments (MOCA, MMSE) & tools build on majority white research cohorts
 - eRADAR (2 current NIH R01s) on 90% White population
 - NACC National Alzheimer's Coordination Center (83% White)
 - ADNI Alzheimer's Disease Neuroimaging Initiative 48 (92% White)



Imaging Biomarkers

PET imaging with β -amyloid & Tau tracers \rightarrow Not covered by insurance, expensive, different non-standardized tracers (tau)

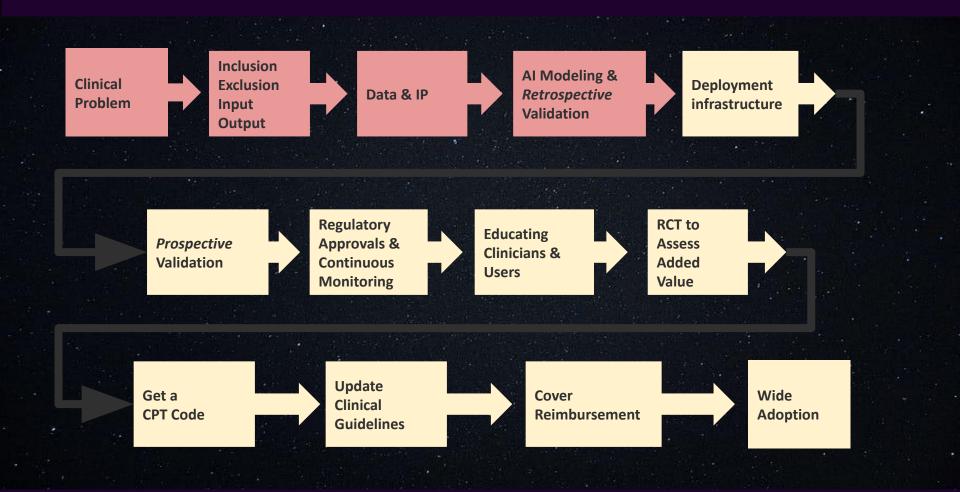
Structural MRIs

- \rightarrow Show atrophies
- \rightarrow Historically using hippocampal volume (not accurate at MCI stage).

 \rightarrow Can we use deep learning on 3D volumes to better identify?

→ Can we integrate these models into clinical settings and measure their impact?

 \rightarrow Do the model eventually change patient outcome (i.e. rate of early detection)



Data - Publicly available large cohorts from NIH/NIA

Alzheimer's Disease Neurolmaging Initiative (ADNI)

- Longitudinal multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease
- 652 individuals with T1 MRIs
 - 2619 MRI scans

National Alzheimer's Coordinating Center (NACC)

- Established in 1999, is a large relational database of standardized clinical and neuropathological research data
- 1522 individuals with T1 MRIs

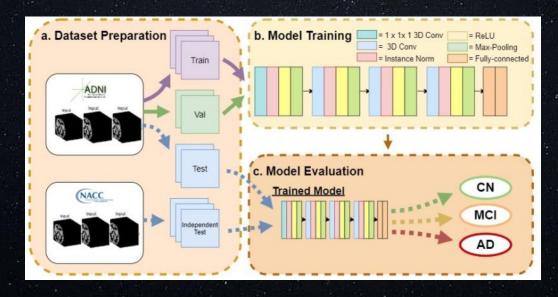
 2045 MRI scans

Model Architecture

Improved architecture via

- Instance normalization outperforms Batch normalization
- Less early spatial downsampling
- Widening the layers brings consistent gains while increasing the depth does

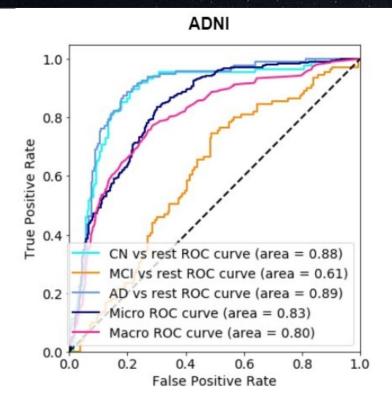
not

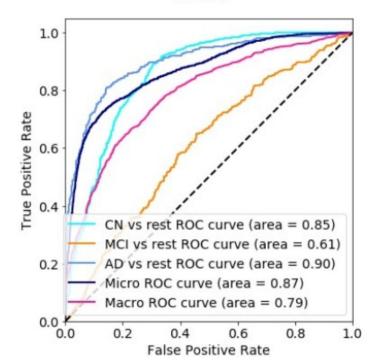


Characteristics Table

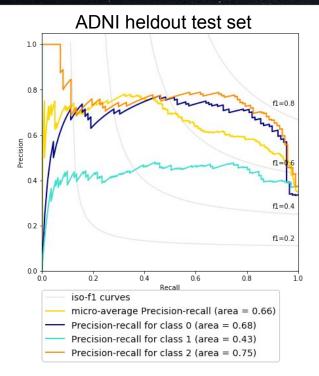
	ADNI (n=2619)			NACC (n=2025)		
Patient Characteristics	Cognitively Normal (n =782)	Mild Cognitive Impairment (n=1089)	Alzheimer's Disease (n=748)	Cognitively Normal (n=1281)	Mild Cognitive Impairment (n = 322)	Alzheimer's Disease (n = 422)
Age, mean (sd)	77.3 (5.6)	76.5 (7.3)	76.5 (7.3)	69.1 (9.4)* (p-val<0.01)	74.4 (8.5)* (p-val<0.01)	73.9 (8.8)* (p-val:<0.01)
Sex, n (%)						
Male	394 (50.4%)	659 (60.5%)	406 (54.3%)	489 (38.2%)* (p-val<0.01)	128 (39.8%)* (p-val<0.01)	219 (49.5%) (p-val:0.433)
Female	388 (49.6%)	430 (39.5%)	342 (45.7%)	792 (61.8%)* (p-val<0.01)	194 (60.2%)* (p-val<0.01)	223 (50.5%)* (p-val:0.02)
Education, avg years (sd)	17.2 (3.1)	16.7 (3.2)	16.1 (3.5)	16.3 (2.6)* (p-val<0.01)	15.7 (2.8)* (p-val<0.01)	15.1 (3.3)* (p-val<0.01)
APOE4, n (%)	224 (28.6%)	567 (52.1%)	496 (66.3%)	479 (37.4%)* (p-val<0.01)	146 (45.3%)* (p-val:0.03)	202 (45.7%)* (p-val<0.01)

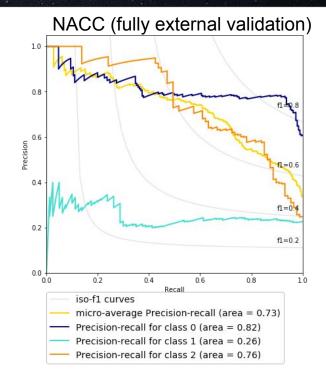
Results



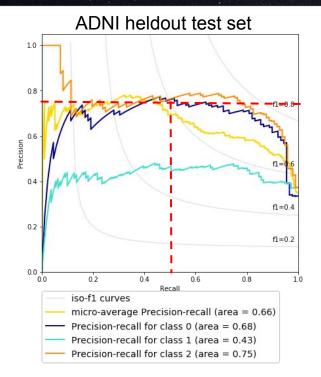


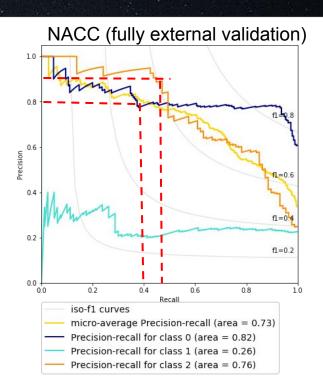
Precision/Recall Curves - Clinically Actionable





Precision/Recall Curves - Clinically Actionable



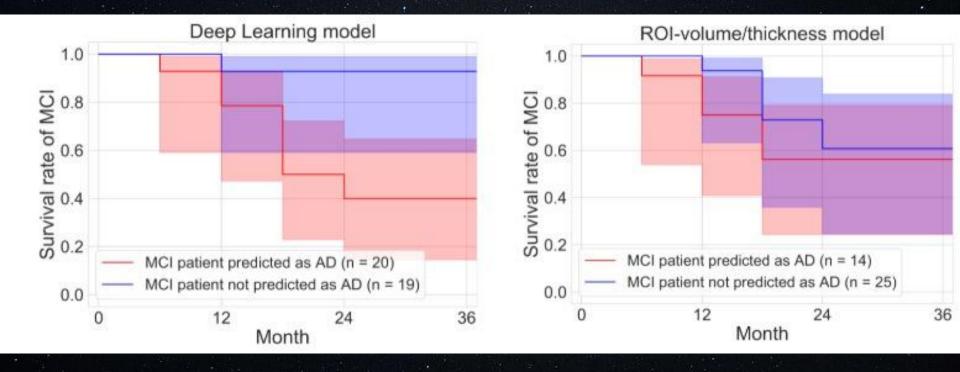


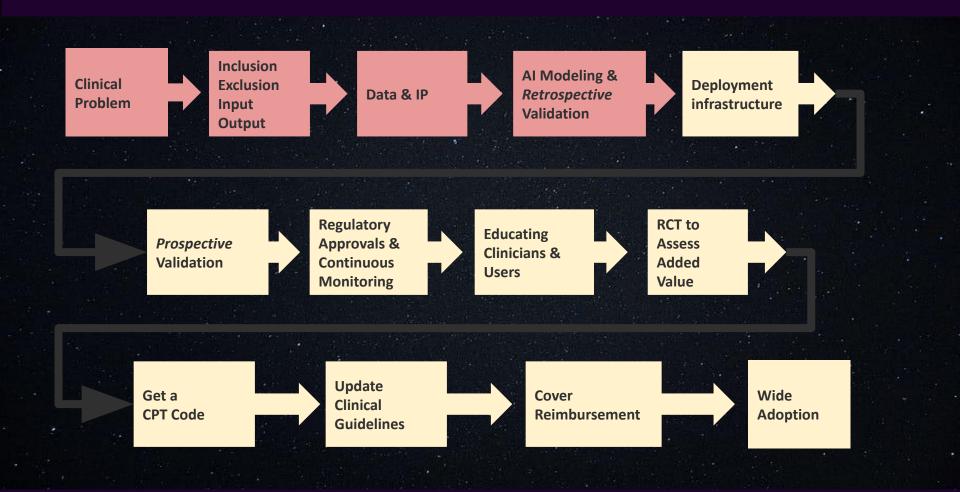
How does deep learning compare to Freesurfer based model?

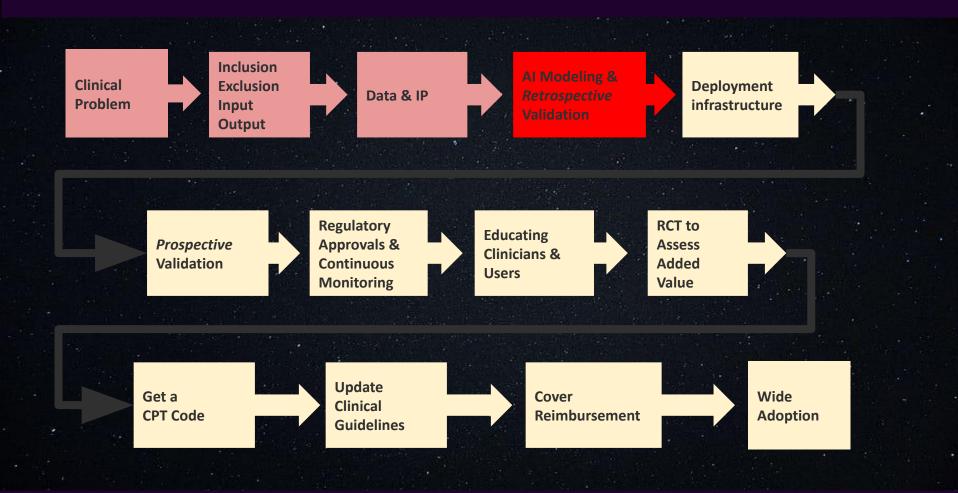
		Heldout ials, 297 scans)	NACC external validation (n=1522 individuals, 2025 scans)		
	Deep learning model	Freesurfer-based model	Deep learning model	Freesurfer-based model	
	Area under ROC curve	Area under ROC curve	Area under ROC curve	Area under ROC curve	
Cognitively Normal	87.59	84.45	85.12	80.77	
	(95% CI: 87.13 - 88.05)	(95% CI: 84.19 - 84.71)	(95% CI: 85.26 - 84.98)	(95% CI: 80.55 - 80.99)	
Mild Cognitive	62.59	56.95	62.45	57.88	
Impairment	(95% CI: 62.01 - 63.17)	(95% CI: 56.27 - 57.63)	(95% CI: 62.82 - 62.08)	(95% CI: 57.53 - 58.23)	
Alzheimer's Disease	89.21	85.57	89.21	81.03	
Dementia	(95% CI: 88.88 - 89.54)	(95% CI: 85.16 - 85.98)	(95% CI: 88.99 - 89.43)	(95% CI: 80.84 - 81.21)	

Freesurfer also takes **11 hours** per MRI vs. Deep learning model that takes **7.8mins** (7 min of pre-processing, 0.07s of the model running)

Progression to Dementia For MCI patients predicted as AD vs not AD





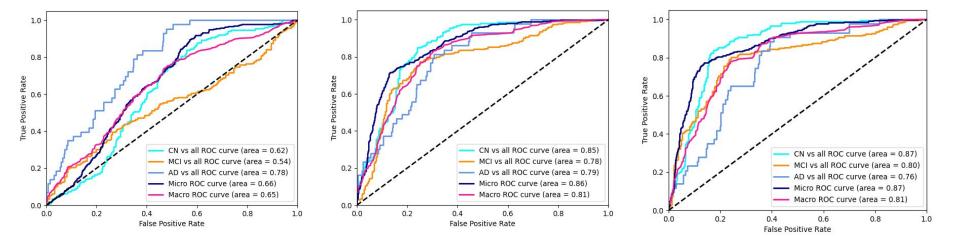


Clinical MRI data from NYU Barlow Memory Center (NIH Designated AD research center ADRC) (Patients who visited 10 neurologists there and had MRIs)

	Full cohort Age>65 (% of n=4945)	Age>65 with Dementia (all subtypes) (% of n=3187)		
Age mean (standard				
deviation)	80.19 (7.60)	80.79 (7.43)		
Gender: Female	2663(53.85%)	1728(54.22%)		
Race: Asian	166(3.36%)	92(2.89%)		
Race: Black	311(6.29%)	173(5.43%)		
Race: White	3469(70.15%)	2192(68.78%)		

Reminder: ADNI 92% White NACC 83% White

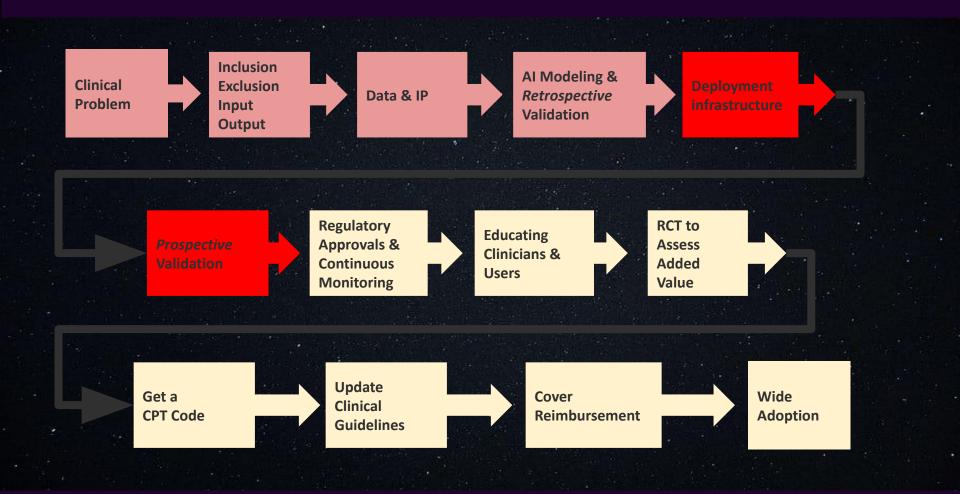
Evaluating our previous model on T1 MRIs



Direct evaluation without re-training

Only fine-tuning the last MLP layers

Re-training the full network



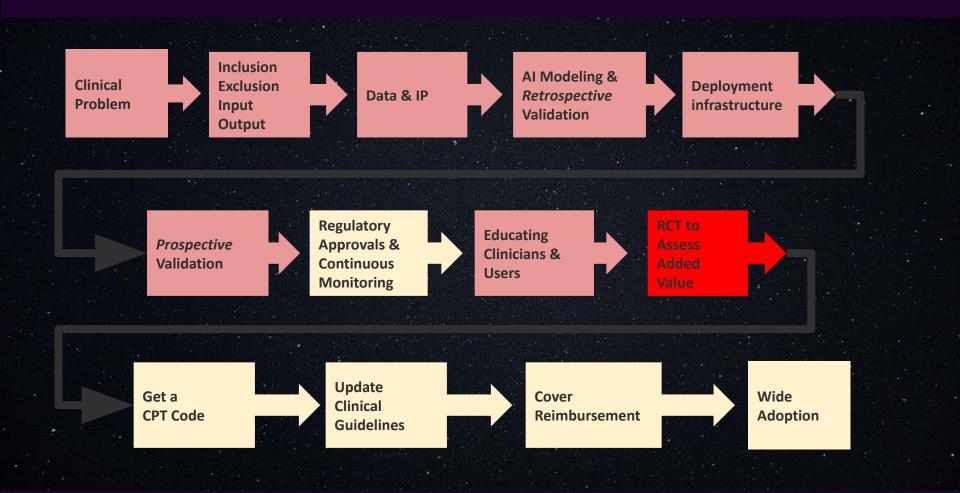
Prospective validation workflow

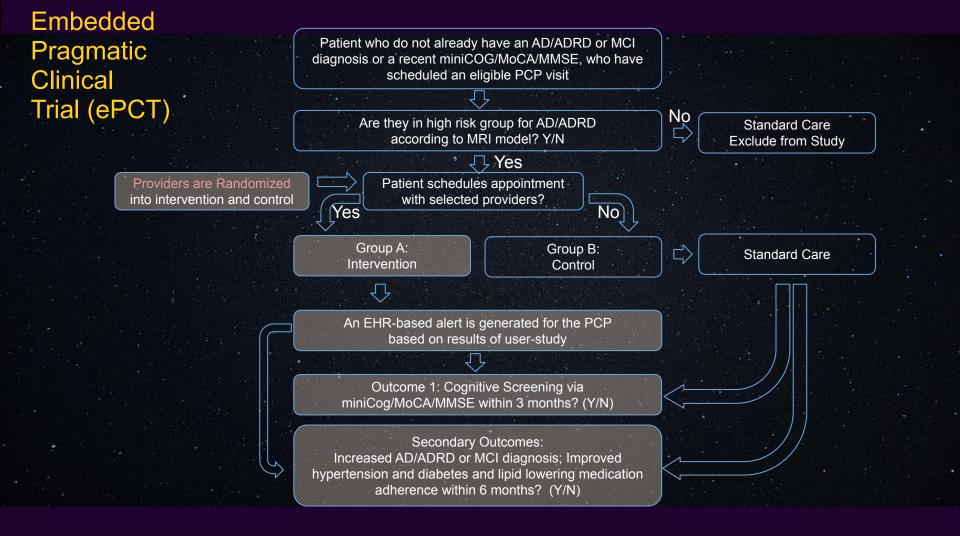
On a daily basis at 7am, identify Accession ID (Image id) of structural MRIs captured at NYU Langone.

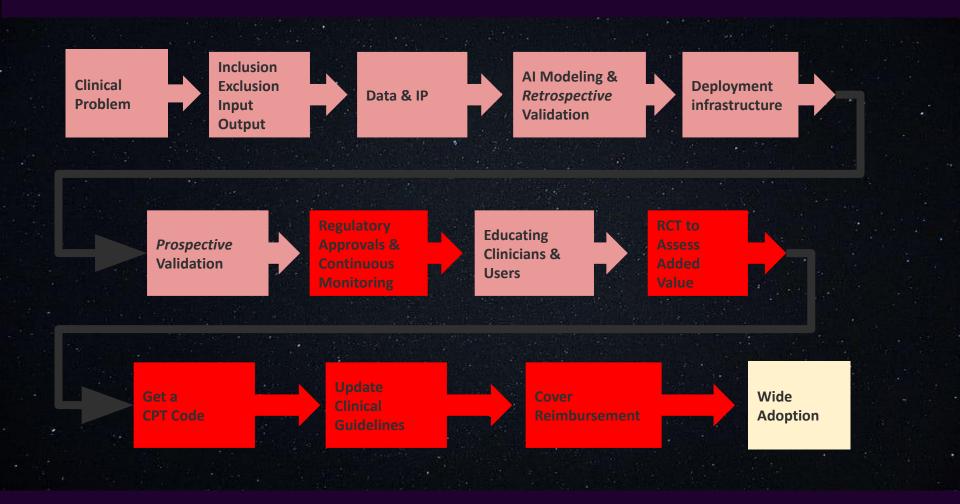
Score with the model and track (MCI+AD) group

Push a PDF back in PACS with scores & explanations

Review by neuro-radiologist residents & measure PPV







Take-home messages

Full Implementation of AI in Clinic and achieving clinical impact goes beyond retrospective modeling

Interdisciplinary (Clinical, AI, IT, Vendor, Statistics), and requires support from high-level executives/leadership

Many human factors involved in the pathway from model to clinical impact

It is doable!

Yin Aphinyanaphongs Jonathan Austrian

Dean Grossman Nader Mherabi Dafna Bar-sagi Fritz Francois Marc Gourevitch

Judy Hochman Leora Horwitz

Rajesh Ranganath Mukund Sudarshan Aahlad Puli Simon Jones Ashley Bagheri Jay Stadelman Felicia Mendoza

Batia Wiesenfeld Elisabeth Wang Paul Testa Eduardo Iturrate Jordan Swartz Dave Randhawa Jesse Rafel David Kudlowsky Peter Stella Chris Petrilli Mark Nunnally **Brian Bosworth** Kevin Hauck Katherine Hochman Stephen Johnson Silvia Curado

Emma Simon Hao Zhang

Vincent Major Ji Chen Neil Jethani

Jager Hartman Jie Yang Seda Bilaloglu Ben Zhang Po Lai Yau Simon Jones Walter Wang Vuthy Nguy Po Lai Yau Michael Quinn Kee Harish Cameron Zenger Julia Greenberg Meng Cao Ruina Zhang Sid Dogra Adrienne Alimasa Garry Bowlin Erin Ello Nick Krueger

Sean McGunigal Joe McNitt Ben Noffke George Redgrave Owen Sizemore **Drew McCombs** James Hickman Sheng Liu Arjun Masurkar Henry Rusinek Jingyun Chen Ben Zhang Weicheng Zhu Carlos Fernandez-Granda

Funding Sources

H National Institutes of Health

The Leon Lowenstein Foundation

NYU Langone Health

NYU

Center for Data Science

Questions and Comments: narges.razavian@nyulangone.org in marges_razavian