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Al in healthcare: a long and bumpy road
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Technology Featured Topics Newsletters Events Podcasts Signin Subscribe
Review

ARTIFICIAL INTELLIGENCE

Google’s medical Al was super accurateina
lab. Real life was a different story.
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E“pic's widely used sepsis
prediction model falls short among
Michigan Medicine patients




The main question we want to answer today
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What research is required to make sure than an Al
application is going to improve care?
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The main question we want to answer today,

rephrased

1.

2.

\_

ﬁVhen we implement medical Al

What are the methodological challenges we
need to resolve?

What research can we do to address those

issues?
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Agenda

1. An example: a tool to aid discharge decisions in the ICU
2. Engage with Al -> Explainable Al
3. Data shift -> Out-of-Distribution detection

4. Treatment effect estimation -> Causal Inference




Agenda

1. Atool to aid discharge decisions in the ICU
2. Engage with Al -> Explainable Al
3. Data shift -> Out-of-Distribution detection

4. Treatment effect estimation -> Causal Inference




The intensive care serves as an ideal starting point for a data
driven hospital. The discharge decision as a use case.

Intensive Care Pacmed's solution
N
Large amount of high quality data s Improve capacity and prevent readmissions
)
N
Complex decisions depending on a large Build an Al that helps with choosing the
variety of factors optimal moment for discharge
)

@ =

staffing, costs and operations O REeles S Ty s

Capacity can form a bottleneck in terms of @7 ® Reduce readmission rate
- e Reduce length of stay




Pacmed'’s approach: strong collaboration with the medical field

Co-development of the ICU tool in partnership with the Amsterdam University
medical Center

Research on the product with various academic partnership to ensure
methodological rigor

Collaborating openly with regulators to develop best practices regarding
responsible deployment of machine learning in healthcare
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Pacmed Critical predicts readmission and unforeseen mortality
within 7 days for all patients eligible for discharge

pacmed vioo . ot e Overview of all patients
on the ICU, with the
predicted risk

Afdelingsmonitor (O Toon zonder ondersteuning }

e Basic information about
the patients is displayed

Brandts, M. Mw. | 18282 | 1954-11-11 Coma/verandering bewustzijnsniveau (non-operatief neuro ) 1.8%
.
e Predicted
Estevez, E. Mw. | 15045 | 1940-07-15 Respiratoir - medisch anders 2.5% ° ° °
readmission/mortality
4 Veldhuis, J. Mw. | 14593 | 1962-05-10 Longembolieén 4.7%

risk within 7 days based
Berendse, F. Dhr. | 17359 | 1969-06-12 Cardiovasculair - medisch anders 1.6% on machine Iearning
Huygens, S. Dhr. | 15982 | 1968-09-29  Bacteriel le pneumonie 6.1% mOdeI

Tully, T. Dhr. | 15066 | 1939-04-01 Acuut nierfalen - n < 3

Jungens, M. Dhr. | 14290 | 1994-08-15 Bacteriel le pneumonie 8.2%

o o
]

Meester, M. Dhr. | 14688 | 1953-12-16 Congestief hartfalen - 0n




It shows the progression of the risk score for every
patient, and the features supporting the prediction

pacmed vioo

Veldhuis, J. Mw. | 14593 | 1962-05-10
° Bednummer: 04 | Opnameduur: 3 dagen
nose: Longembolieén
Verloop heropname/mortaliteit risico Recent
15%
10%
5%
Nu
0%
Gisteren Vandaag

0
[1i] Download handleiding Feedback Verander wachtwoord  Log out M

Heropname/ Mortaliteit risico 4.7% Ondersteuning

Top 10 belangrijkste voorspeliers

@ gcassocieerd met een hoger dan gemiddeld risico op
heropname/mortaliteit

@ geassocieerd met een lager dan gemiddeld risico op
heropname/mortaliteit

Voorspeller Waarde van patiént

BRONCHIAAL TOILET (AANTAL
KEREN) [ ] 3

Maximum in de laatste 24 uur

BASE EXCESS g Sratnaii

Minimum over de eerste 24 uur

ASPARTATE AMINOTRANSFERASE
(ASAT) @
Minimum waarde over de gehele
opname

146 E/l

CREATINE KINASE
MUSCLE/BRAIN (CK-MB) g
Is het gemeten in de afgelopen
24 uur?

SERUM FOSFAAT
Eerste waarde (over de gehele [ ] 3.359 mmol/I
opname)

GAMMA-GLUTAMYLTRANSFERASE
(GGT)

Is het minstens 1 x gemeten
gedurende de gehele opname?

Gemiddelde
ontslagen patiénten

maximum van 1.788

minimum van -0.74
mmol/|

minimum van 56 E/I

gemeten bij 52.78%

eerstgemeten
waarde van 1.035
mmol/|

gemeten bij 5214

Predicted risk is shown
over time

The most important
variables contributing
to the individual risk are
displayed

Simple design, tested
and validated with >25
intensivists from 3
hospitals

This interface is going
to change soon
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After 5 years of work, the tool is now live

CE certified

“’y February 2020

2019 2020

Model Feasibility
May 2017

Go Live
Aug 2022

2017 2018 2021 2022 2023

Today

Enduser testing )

Model validation (VUMC 2016+, ETC and LUMC)

Technical implementation
Clinical Implementation Medical Ethical Review (METCVUmc) S 101 2021 - Feb 2022

Clinical implementation and evaluation -

A
[ |

Phase 1: Al Off Phase 2: Al On
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Bringing a tool to the bedside is a long journey... and
it takes a big team
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Agenda

1. Atool to aid discharge decisions in the ICU
2. Engage with Al -> Explainable Al
3. Data shift -> Out-of-Distribution detection

4. Treatment effect estimation -> Causal Inference
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Explainable Al: (some of) the problems

1. We do not tailor our Al interfaces to the users, or not enough

2. Clinicians must be able to engage with the Al's reasoning, to
decide when they agree and when they disagree

3. Explanations should be reliable (no confirmation bias)

16




Explainable Al I: survey on clinicians’ wishes on
explainable Al

g UNIVERSITEIT VAN AMSTERDAM
X

We develop several techniques to ‘explain’
what the Al does to the users. e

Explainable Machine Learning in Healthcare.
This is a survey organised by the Amsterdam Business School, University of Amsterdam, the Netherlands.

The survey is estimated to take around 15-30 minutes. Thank you for taking the time to participate.

..but have we asked the users what they
want?

We put together a survey to gather

clinicians’ preferences on XAl, it can be
found here. For clinicians only!

Raéber, Tabea, et al. Manuscript in preparation. 17



https://uva.fra1.qualtrics.com/jfe/form/SV_0ey3ort6pib9J4y

Explainable Al II: linking to clinicians’ known

concepts

We develop several techniques to
‘explain’, but with a Computer Science
mindset.

We need explanations linked to concepts
clinicians use every day to discuss
patients.

Example: give corpus-based explanations
based on medical archetypes.

Meijs, Arne, et al. Manuscript in preparation.

E] Breathing
Circulation

The ABCDE
Approach
To
Deteriorating
Or
Critically Ill Patients
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Explainable Al lll: addressing the problem of

confirmation bias

Suppose you get an
image and an explanation

Is this convincing?

Why?

A e
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What can go wrong: the way in which explanations are

used and understood

How do you know that the
machine has a concept of
‘head’ that it is used to
classify the meerkat?

Or ‘beak’ to classify the
dowitcher?

A e

—0.006

—0.004

dowitcher red-backed_sandpiper
=
. 9
meerkat mongoose
Y 20

1
0.000 0.004 0.006

SHAP value
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What can go wrong: the way in which explanations

are used and understood

The fact that the cloud of
pixels highlighted is
sensible to us does not
mean that it is highlighted
for the right reason.

Confirmation bias

The tendency to believe
explanations that confirm
our belief/conviction.

AN A
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Criticism

Line of argument:

1) We have no idea whether the explanation of the machine means what we
think it means
2) Werisk to

a) project our belief onto the machine
b) accept an explanation that is ungrounded/misleading

3) Hence these post-hoc local explanations are not reliable
4) We should not use them in medical contexts, and should not be suggested
in guidelines etc

The false hope of current approaches to explainable artificial
intelligence in health care

Marzyeh Ghassemi, Luke Oakden-Rayner, Andrew L Beam 29



Core issue: semantic match between sub-symbolic
and symbolic representations

Humans cannot attribute meaning to a sub-symbolic representation (e.g. a
vector or a matrix of numbers) without matching it to a symbolic concept we
use or know.

23



Semantic match is encoded by the commutation of
this diagram

Assigns a
representation to Sets of states of the

the set of states world the set of states in
that elicits it which it is used

Meaning Meamng
assignment ’ assignment

Human
—_ representation

Translation (symbolic)

Assigns a
representation to

Sub-symbolic
representation

24




The failure of semantic match: example

\

Meaning
assignment
£ )
-
e
e »

—

Translation

Meaning
assignment

-

\

Human encoding:
dog’s head
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A reflection on the meaning of features

There are

1. low-level features, i.e. the entries of your input vector
2. high-level features, i.e. representations of the problem the machine is

using; e.g. entries of the latent space of NN
In general we do not have access to the meaning of high-level features of
a machine (black box).
However for low-level features there is a distinction:

3. some data types (e.g. EHR) have low-level features with clear meaning
4. some data types (e.g. images) have low-level features without meaning

Cina, Giovanni, et al. "Semantic match: Debugging feature attribution methods in XAl for healthcare." 26

arXiv preprint arXiv:2301.02080 (2023).



Compare these two explanations

dowitcher red-backed_sandpiper
b
i\
meerkat mongoose
i
| | ] Ry
~0.006 ~0.004 ~0.002 0.000 0.002 0.004 0.006
SHAP value
Output=0.4
Age =65 —
Sex=F — '
Explanation

BP =180 —
BMI=40 —

Base rate = 0.1

Output=0.4

I

8]

«— Age =65
<— Sex=F
«— BP =180
<— BMI =40

T

Base rate = 0.1
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First conclusion

1) In data types where low-level features have meaning, we can use feature
attribution at the level of single features because we have semantic match
‘out-of-the-box’

2) In all data types, explanations of high level features are unreliable...
unless we find a way to access the internal representation of the machine

Cina, Giovanni, et al. "Semantic match: Debugging feature attribution methods in XAl for healthcare." 28
arXiv preprint arXiv:2301.02080 (2023).



So.. let’s find a way to access the internal
representation of the machine

Assume a ML model f has been trained on labeled data, and we are considering a sample
(x, y). Denote a local feature attribution method with M and say that M (f, x) = e is the
explanation for why model f gives prediction f(x) on input x.

We formulate an hypothesis 8 of what is highlighted by the explanation. We are interested in
testing whether we have semantic match between 6 and e.

GGAL

Cina, Giovanni, et al. "Semantic match: Debugging feature attribution methods in XAl for healthcare." 29
arXiv preprint arXiv:2301.02080 (2023).




Recap of semantic match diagram

Assigns a fth Assigns a
representation to Sets of states of the representation to

the set of states world the set of states in

that elicits it which it is used

Meaning Meaning
assignment ’ assignment

e — 0
Translation
Cina, Giovanni, et al. "Semantic match: Debugging feature attribution methods in XAl for healthcare." 30

arXiv preprint arXiv:2301.02080 (2023).



Agenda

1. Atool to aid discharge decisions in the ICU
2. Engage with Al -> Explainable Al
3. Data shift -> Out-of-Distribution detection

4. Treatment effect estimation -> Causal Inference
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The problem of Out Of Distribution (OOD) data

Suppose you have an Al software
implemented in hospitals. At first the model

receives data similar to training data.

Output=0.4

Age =65 —
Sex=F —
BP =180 —
BMI=40 —

Base rate = 0.1

32



The problem of Out Of Distribution (OOD) data

Suppose you have an Al software
implemented in hospitals. At first the model

receives data similar to training data.

Then for some reason the data arriving to
the model changes remarkably. Now the

software’s output is not reliable.

?
Output=0.4

6500
Age = & —)

Sex=F —
BP =180 —|
BMI =40 —

Base rate = 0.1
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The problem of Out Of Distribution (OOD) data

Suppose you have an Al software
implemented in hospitals. At first the model

receives data similar to training data.

Then for some reason the data arriving to
the model changes remarkably. Now the

software’s output is not reliable.




The causes of data shift (aka covariate shift) in a
medical context

The demographics of the population change
The treatment protocols change

There are bugs in the code

Systematic human errors in data input

Third party manipulation

ok W~

35



But..why is this a new problem?

We have always had this problem, and we solved it with
outlier detection and statistical tests to detect distribution
shift (e.g. SPM).

What is new is high-dimensional data. Many of
those techniques do not scale to high

dimensionality (e.g. K-S test).

36



Detecting OOD periodically vs in real time

4 ) 4 )
Monitoring data shift
Monitoring in real time
periodically e
\_ ) \_ G@AL Y,

< <

Errors accumulate .

Less certainty but
before change is

errors can be prevented
detected

37



We want a reliable way to flag OOD patients in real
time. What does the literature say?

Can we use a model’s uncertainty

to flag OOD samples?

No conclusive information in Can You Trust Your Model’s Uncertainty? Evaluating
; Predictive Uncertainty Under Dataset Shift
literature y
Lack of tests on medical data
. Yaniv Ovadia* Emily Fertig* Jie Ren’
Ve ry | Itt I e teStS O n St ru Ct u red Google Research Google Research Google Research
yovadia@google.com emilyaf@google.com jjren@google.com
d ata (I I ke E H RS) Zachary Nado D Sculley Sebastian Nowozin
Google Research Google Research Google Research
znado@google.com dsculley@google.com nowozin@google.com
Joshua V. Dillon Balaji Lakshminarayanan? Jasper Snoek*
Google Research DeepMind Google Research
jvdillon@google.com balajiln@google.com jsnoek@google.com
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We benchmarked several methods to see if they

work in practice

We tested on public
datasets

e MIMICIII

o ¢elCU

We tested ~21 (27)
combinations of
models and uncertainty
metrics

Experiments simulating different failure modes:

O

O

Perturbation: Simulate data corruption
by scaling a single feature

00D groups: Remove certain patients
from training set to simulate shift in
demographics / new conditions

Domain adaptation: Use MIMIC-III data

set as a new group of patients for a
model trained on elCU, and vice versa

39



Perturbation experiment: scaling a single feature

ReLU architectures
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AUC-ROC of 00D detection for ReLU architectures mostly goes down if we scale a

feature with larger and larger values 40




OOD Groups experiment

00D detection AUC MIMIC

Acute and unspecified renal failure _
(size: 20,22 %, diff- 57.14 %) 54 o2 .61 .61 .61 .38 44 .62 .59 61 .62 .54 .60 .62 .62 .62 .59 .61 .54 .62 .62

Elective admissions _
(size: 13.43 %, diff: 64.46 %) S48 34 36 .35 49 E57EES56M 32 2390 35 .32 46: | 36 | 32 32 || 32 | 38 35 52N 32! 32

Emergency/
Urgent admissions -JESEEEN .54 |1 .56 |1.56° .52 WE588560F .52 48 50 52 53 [ .54 51 .51 51 .42 .46 pEeZE .52 .52
(size: 86.57 %, diff: 59.35 %)

Epilepsy; convulsions _
(size: 4 56 %,ydiff: 40.48 %) 58 INHBMI V578 BE588 .50 .50 .46 EESONIEESONEEGORENS0N .52 WES58NENSEI NS5 B BR50N ING O RGO 57/ 58 IS B
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(size: 71.16 %, iff: 32.99 %) .50 IEST N W51 S A .5 07 IS .49 (R578 511 (578 52 B85 1 5 73 5 2 5 2.8 5738 ST RS T 501 52 3 9.5,
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Newborn
(Size: 14:38 %’ dIff 63:20 %) 27 36 34 EEH
548 .52 93 53 .50 52, 54 54 54 53 53 .50 .54 54
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Domain adaptation experiment

( AE (default)
AnchoredNNEnsemble (entropy)

mmm AnchoredNNEnsemble (mutual information)
mmm AnchoredNNEnsemble (std)
: II . mmm BNN (entropy)
—_— "__—I_ m=m BNN (mutual information)
elCU (diff: 77.89 %) =:_ : = BNN (std)
= _—' : mmm BootstrappedNNEnsemble (entropy)
—m I‘ mmm BootstrappedNNEnsemble (mutual information)
: mmm BootstrappedNNEnsemble (std)
— i T —— === MCDropout (entropy)
==———j———— = mm  MCDropout (mutual information)
MIMIC (diff: 76.87 %) =¥ = — s MCDropout (std)
_'i S — m== NN (entropy)
,= = NN (max prob)
0.0 0.2 0.4 0.6 0.8 10" NNEnsemble (entropy)
00D detection AUC NNEnsemble (mutual information)
NNEnsemble (std)
[: PPCA (default)

T PlattScalingNN (entropy)
PlattScalingNN (max prob)
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Insights from the experiments

e Uncertainty estimation techniques fail to identify novel
examples, even in “obvious” cases

e RelU architectures do the opposite of what we want

e Density estimation techniques perform better at this,
but also not great

Trust Issues: Uncertainty Estimation Does
Not Enable Reliable OOD Detection On
Medical Tabular Data

Dennis Ulmer, Lotta Meijerink, Giovanni Cina Proceedings of the Machine Learning for Health
NeurlPS Workshop, PMLR 136:341-354, 2020.
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The root of the problem: overconfidence

Neural Networks that use uncertainty
to detect OOD points seem to suffer
from severe overconfidence.

If we take one feature and scale it up by
A LOT then the models are still very
certain.

Consequence: some models are more
certain at classifying OOD points than
in-domain data!




The perturbation experiment again

If we take one feature and scale it up
by ALOT then the models are still very
certain.

Now suppose the feature we are
scaling up is

1. Predicting recidivism for convicts
a. Amount of previous felonies

2. Predicting risk of mortgage default
a. amount of debt

3. Almost any medical problem




This raises some questions

e Can this behaviour observed on synthetic data be proven to be a
systematic bias?

e Does this phenomenon apply to several uncertainty metrics?

e Which network architectures are affected by this?

46



Broken mirrors: ReLU networks are piecewise affine
functions

(a) Predictive entropy H[pg(y|x)] of ReLU (b) Polytopal linear regions induced by same (c) Magnitude of gradient of predictive en-
classifier. classifier [Arora et al., 2018]. tropy ||VxH[pg (y|x)]2-

[ Intuition: generalization behavior is due to linearity on the polytopes } .




Our theoretical result

Theorem 1 (Convergence of uncertainty in the limit)
Given a set of ReLU networks, suppose that their Jacobian
matrices with respect to the input do not contain any zero technical conditions on
entries. Then, whenever uncertainty is measured via either | —— the network and the
of the following metrics

polytopes

1. Max. softmax probability (Hendrycks & Gimpel, 2017)

2. Class variance (Smith & Gal, 2018)

3. Predictive entropy (Gal & Ghahramani, 2016) | No matter how you measure uncertainty

by scaling a feature the uncertainty
stabilizes

4. Mutual information (Smith & Gal, 2018)

the network(s) will converge to fixed uncertainty scores
when scaling a feature of an input in the limit.

e Holds for: Single networks, Ensembles, MC Dropout, Bayes-by-backprop etc. (forms of Bayesian model averaging)

e We showcase this behaviour for several models in experiments on synthetic data
[Submitted on 9 Dec 2020 (v1), last revised 26 Feb 2021 (this version, v3)]

Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at
Reliable OOD Detection 48

Dennis Ulmer, Giovanni Cina




Implementing OOD detection for a specific medical
use case: development and deployment

Machine Learning without OOD detection:
Development
1. Gather data
2. Train a predictive model
3. Evaluate performance of the predictive model with ground-truth labels

Deployment:
4. Get new input
5. Predict on new inputs

49



Implementing OOD detection for a specific medical
use case: development and deployment

Machine Learning with OOD detection:

Development

Gather data

Train an OOD detector on this data

Evaluate performance of the OOD detector

Train a predictive model

Evaluate performance of the predictive model with ground-truth labels

a b=

Deployment:

6. Get new input
Check new inputs with OOD detectors
8. Predict on new inputs

~

50



Implementing OOD detection for a specific medical
use case: ..how exactly?

1. OOD samples typically come after development... how do we train
and select an OOD detector?

2. How do we medically validate an OOD detector?

3. How do we ensure that an OOD detector can catch all possible OOD
samples?

4. Once we flag an O0OD sample, what happens?

51



Our contribution: guidelines for implementing OOD
detection in medical Al use cases

e We describe variables influencing performance of OOD detectors

e We show how to create OOD tests from available data

e How to validate OOD detection with interpretability tools

e Show a practical example on real-life EHR data

e Github repository to apply to any tabular datasets

Out-of-Distribution Detection for Medical Applications:
Guidelines for Practical Evaluation

Karina Zadorozhny KARINA.ZADOROZHNY @GMAIL.COM
Pacmed BV - Amsterdam, The Netherlands

Patrick Thoral P.THORALQAMSTERDAMUMC.NL
Paul Elbers P.ELBERSQAMSTERDAMUMC.NL

Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence
(LCCCI), Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Vrije Universiteit, Ams-
terdam, The Netherlands

. s 52
Giovanni Cina GIOVANNI.CINA@QPACMED.NL
Pacmed BV - Amsterdam, The Netherlands



How to desigh OOD detection tests for medical
data? An example

Medical data often require definition of inclusion-exclusion criteria

— Use these groups as 00D

A. Using excluded data

Split on inclusion-exclusion

(LCLEELGELED

criteria.

include

<

exclude

Use a trained OOD

detector to score all

S s g . groups.
a in-distribution @
S H_
= o°
- =
- 3 =
= _. 5 &
= -
(=] -
=

=

Create clinically-relevant OOD
groups from excluded data.
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Practical example on real-world EHR data

Dataset: Density estimators:

AmsterdamUMC ICU dataset Autoencoder (AE)

e tabular data Variational Autoencoder (VAE)
Local Outlier Factor (LOF)
Deterministic Uncertainty Estimation
e downstream task: prediction of hospital (DUE)
Probabilistic PCA (PPCA)
e Normalizing Flow

e mixed type data (continuous and categorical)

readmission at discharge time

e unbalanced: only 5% adverse outcomes



Comparing detectors on real-world EHR

data

e Detecting patients that are far from discharge

1 day (n=2363)

2 days (n=12777)
3 days (n=5551)
4 days (n=3954)
5 days (n=3029)
6 days (n=2465)
7 days (n=2051)
8 days (n=1728)
9 days (n=1454)
10 days (n=1269)
11 days (n=1104)
12 days (n=967)
13 days (n=865)
14 days (n=746)
15 days (n=675)
16 days (n=589)
17 days (n=516)
18 days (n=457)
19 days (n=403)
20 days (n=364)
21 days (n=306)
22 days (n=262)
23 days (n=213)
24 days (n=175)
25 days (n=147)
26 days (n=112)
27 days (n=83)
28 days (n=64)
29 days (n=46)
30 days (n=17)

AUC of OOD Detection
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Comparing detectors on real-world EHR
data

e Detecting patients on ventilation and CVVH

AUC
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Comparing detectors on real-world EHR

data

Frequency

Frequency

~

-

Detecting COVID-19 patients and suspects

AUC

1.0
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Checking validity of OOD detectors with

interpretability tools

e Assess interpretability on a dataset-level

e Inspect important features individually with clinicians (qualitative)

B. Qualitative inspection of outliers with medical experts

]_.

Novelty Scores

;.l_;.....

1. Train OOD detectors 2. Use the OOD detector to to score
on in-distribution train data. test data. Inspect the highest scoring
samples.

age NN
weight @
heartrate [

temperature |-

3. For each sample, use SHAP to
rank features.

Feature Sample Value Data Mean Data Var

age 38 67 14
weight 63 76 34
heart rate 124 80 20

4. Compare feature values of the
sample with the rest of the data. Assess
importance with clinicians.



Where we are when it comes to reliable OOD
detection, and what comes next

Preliminary conclusions:
e Itis better to have a decent (although not great) OOD detector than none at all
e We have some working solutions
e What is the best model is rather case-dependent

Next steps:
e What is missing is a principled solution (models that know what they don’t know) -> Theoretical
work

e More robust round of tests to ensure that models work well in real-world scenarios ->
benchmarking and community challenge
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Agenda

1. Atool to aid discharge decisions in the ICU
2. Engage with Al -> Explainable Al
3. Data shift -> Out-of-Distribution detection

4. Treatment effect estimation -> Causal Inference
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Causal Inference in the ICU: (some of) the problems

1. Assessing treatment effect for treatment of dynamic length

2. Estimating the adverse side effects of medications
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Causal Inference in the ICU |: estimating effects for

treatments of dynamic length

In the ICU patients receive some treatments
‘as long as needed’, meaning:
e Treatment starts when some conditions
are met
e Duration is not fixed
e The necessity of treatment is
periodically re-evaluated

Question: how much is enough, and how
much is too much?

(

Admission to ICU

(¥

Mechanical ventilation

-

(¥

Proning

-
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Causal Inference in the ICU |: estimating effects for
treatments of dynamic length

At every decision point, we
would want to estimate the
effect of continuing or
stopping treatment.

Example: right now Pacmed
Critical shows only the risk
when the discharge option is
taken, but not if it is *not*
taken.

a

We have a 3-year project
funded on this topic,
starting this spring.

V

programmamanagement
kansen voor west

N




Causal Inference in the ICU II: estimating side effect

of medications

Medications undergo RCTs
to test effects on clinical
outcomes, but often adverse
drug events are not
thoroughly researched.

Example: nephrotoxicity of
antibiotics in the ICU.

)
LEAPfROG

1 Nov 2022 | Official start!

Development of a learning medication safety system

Adbverse | oﬁ
[#'Z;?ﬁ 5 é‘% % o
C i
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In summary: what we are working on

1. Atool to aid discharge decisions in the ICU
2. Explainable Al
3. Out-of-Distribution detection

4. Causal inference
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Who is (or will be) working on it

L o Pacmeo
1. Atool to aid discharge decisions in the ICU

L;EI UNIVERSITY
g OF AMSTERDAM

2. Explainable Al
3. Out-of-Distribution detection

4. Causalinference
(8 8VVii (i

If any of the topics above
is of interest, we are
happy to collaborate!
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Q&A
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